Population-level assessment of cranial modification

Smithsonian

NATIONAL MUSEUM of NATURAL **HISTORY**

and atlanto-occipital fusion across Peru

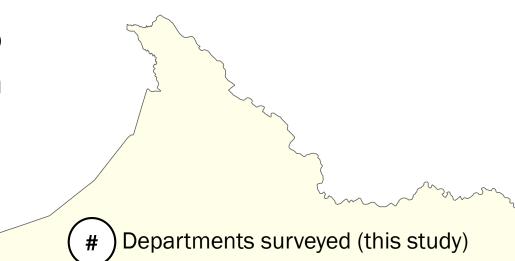
Laura N. Pott,^{1,2} Rita M. Austin,^{1,2} Andrea R. Eller,² Sabrina B. Sholts²

¹University of Oklahoma, Department of Anthropology, OK 73019

² National Museum of Natural History, Smithsonian Institution, Division of Biological Anthropology, Department of Anthropology, Washington, DC 20560

Introduction

Methods


Artificial cranial modification (ACM) has been practiced worldwide but occurs with the highest frequency in the Americas.¹ ACM was accomplished through compression devices like splints, wraps, or hats that exerted pressure on infants' malleable cranial bones, resulting in a variety of head shapes.² In pre-Hispanic Peru, ACM could be related to ethnicity, geographic origin, or status.⁴ The desire to inscribe these layers of social meaning into physical appearance motivates ACM.^{2,3}

2

(3)

(4)

Atlanto-occipital fusion (AOF) is a skeletal abnormality that is also distributed worldwide. AOF involves the partial or complete fusion of the first cervical vertebra (atlas) to the occipital bone, and it often co-occurs with spina bifida and fused transverse processes.⁵ AOF is commonly described as a heritable, congenital condition, but environmental

In this study, 1407 crania from the NMNH's Peruvian collections were surveyed. They are dated to 1300-1500 CE and come from nine departments (states) in Peru (Fig. 1). Data was collected alongside the EMPHASIS survey, which assesses how environmental changes impact the skeleton.¹¹

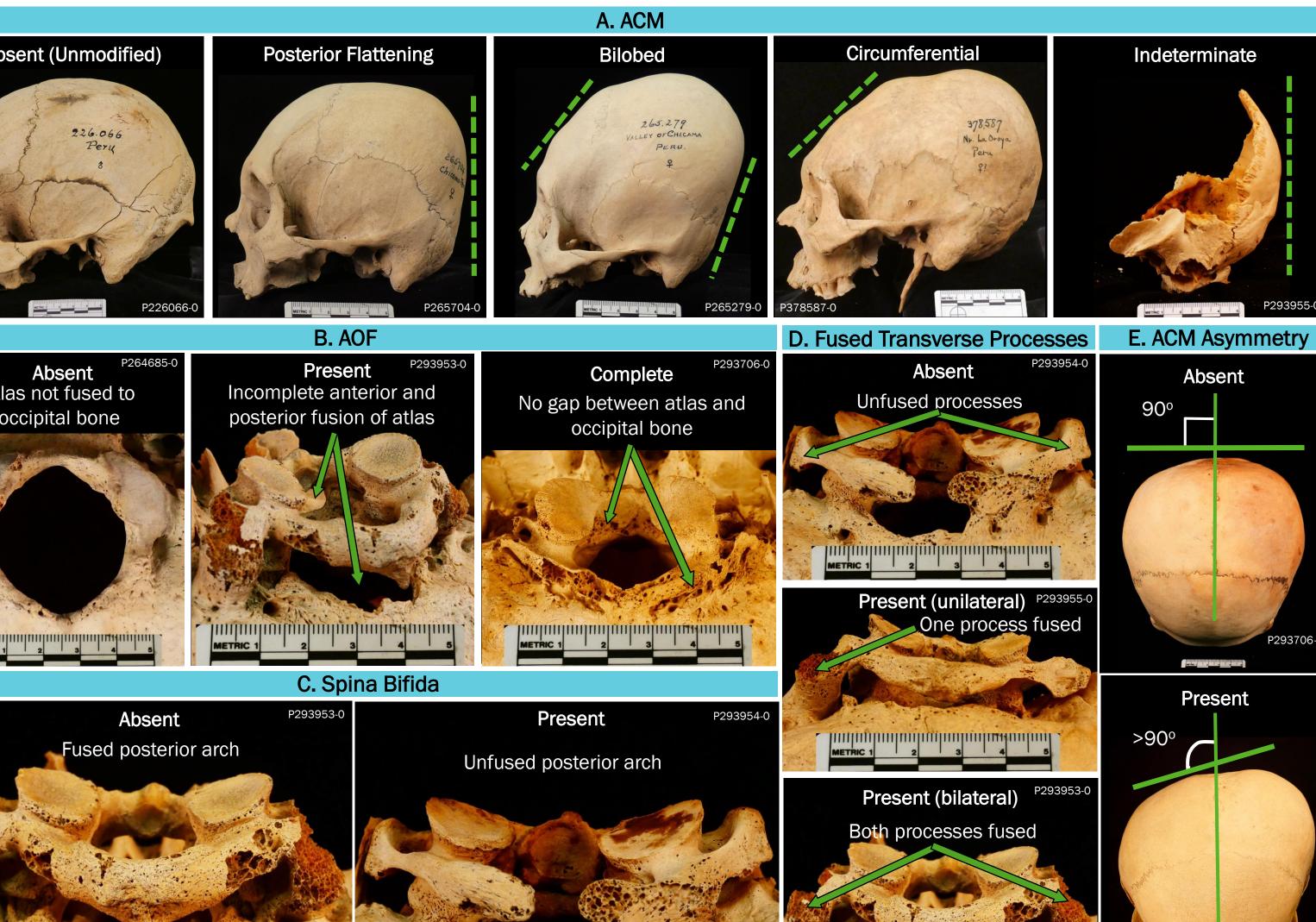
ACM was recorded as absent/present. If present, ACM type was assessed using overall shape of the cranial profile and zones of flattening (Fig. 2, panel A). Complete crania exhibiting ACM were categorized into three types, and fragments exhibiting ACM were classed as indeterminate (Fig. 2, panel A).³ AOF was recorded as absent or present. If present, completeness of fusion was classified as partial or complete (Fig. 2, panel B). Complete fusion of the atlas indicates complete anterior and posterior fusion to the occipital bone, whereas partial fusion is incomplete in either region.⁵ Among the individuals who exhibited AOF, spina bifida was recorded as absent/present (Fig.2, panel C).⁵ Fused transverse processes and ACM asymmetry were recorded as absent/present (Fig. 2, panels D & E).

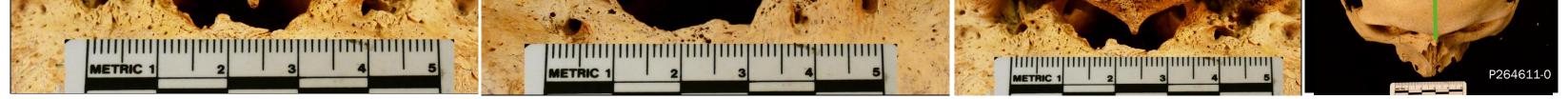
factors like disease or restriction of movement associated with ACM may also contribute.^{6,7,8}

AOF has been previously described in populations from three regions of Peru and in one cranially-modified individual from Mexico.^{6,9,10} Because several individuals with both AOF and ACM were observed in the Peruvian collections at the Smithsonian's National Museum of Natural History (NMNH), this study seeks to assess the relationship between ACM and AOF across Peru.

Figure 1 (right). Map of AOF presence in pre-Hispanic Peru. (5)

1. Lambayeque, 2. La Libertad, 3. Áncash, 4. Lima, 5. Callao 6. Junín, 7. Huancavelica, 8. Ica, 9. Cuzco, 10. Arequipa


Objectives


investigate the relationship between ACM and AOF presence/completeness

assess anatomical differences in the atlas among individuals with AOF: spina bifida, and fusion of transverse processes.

AOF observed (this study) and asymmetry. OF observed (published) ACM observed (this study) Bilobed Absent (Unmodified) **Posterior Flattening** 226.066 **B. AOF** Present Absent Atlas not fused to Incomplete anterior and posterior fusion of atlas occipital bone 7) (9) C. Spina Bifida Present Absent P293953 (10) Fused posterior arch

Figure 2. Anatomical features assessed in this study: ACM, AOF, spina bifida, fused transverse processes,

Results

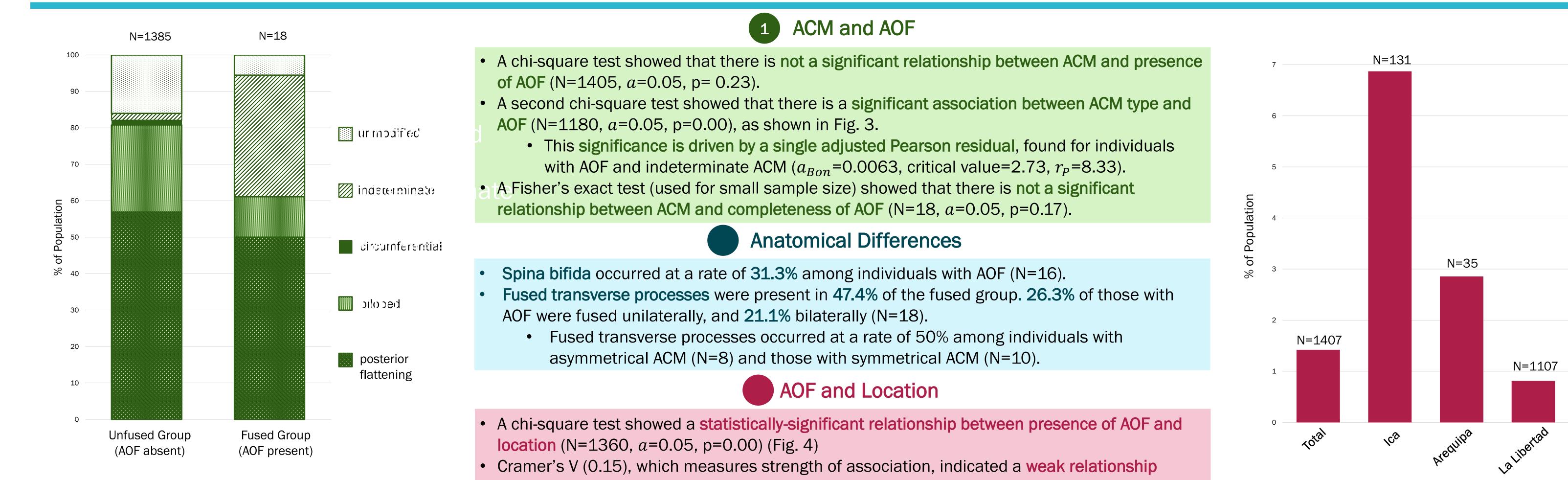


Figure 3. ACM type in fused vs. unfused groups

between AOF and location.

Adjusted Pearson residuals indicated that AOF occurred significantly more than expected in Ica $(a_{Bon}=0.0063, \text{ critical value}=2.73, r_{P}=5.10).$

Figure 4. Rate of AOF in the total population and by department

Discussion and Conclusions

- Incidence of AOF (1.42%) falls within the range previously calculated for several global populations (0.08-3%), and is slightly higher than the global prehistoric rate (1%).^{12,9}
- ACM is not one of the environmental factors that influences AOF presence or completeness.
 - Correlation between ACM type and AOF is likely due to the high number of fragments with indeterminate ACM among individuals with AOF (33.3%) (Fig. 3).
 - Genetic vs environmental etiology of AOF is still unclear.
- AOF often co-occurs with other anatomical differences of the atlas
 - Lack of postcrania makes collections comparisons limited, but rate of spina bifida (31.3%) is much higher than reported for current Peruvian populations (6.1%).¹³
 - Fused transverse processes occurred at a rate of 52.6% among individuals with AOF. Bilateral fusion of the transverse processes occurred at a rate of 26.3% overall, higher than the 10% reported for a sample of Northern Indians.¹⁴

• There is a relationship between AOF and location (Fig. 4).

- AOF occurs in two previously-unreported departments along the coast: Arequipa and Ica, where AOF occurs significantly more often than expected.
- Comparison of AOF incidence between departments is limited by low coverage of collections from Lima (2.8%) and Arequipa (54.7%).
- AOF has been reported exclusively in coastal departments so far, with genetic or environmental implications (Fig. 1).
- Further research covering more departments would develop:
 - More accurate comparison of AOF incidence between departments.
 - More complete description of the geographical distribution of AOF between coastal, highland, and jungle regions of Peru.

ould like to express thanks to my co-mentors, Sabrina Sholts and Andrea Eller, for their guidance and for giving me t portunity to participate in the NHRE program. Additional thanks to Rita Austin for all her support and to the rest of the EMPHASIS team: Stephanie Canington, Courtney Hofman, George Francis, Srishti Sadhir, and Mia Ayer. Thank you to /irginia Power and Gene Hunt for their administration of the NHRE program and to the NSF for funding this research

Acknowledgements

References

 Fehir A. 2014. In a bind: artificial cranial deformation in the Americas. Laurier Undergraduate Journal of the Arts 1:29-37. Tiesler V. 2018. Cranial shaping. In: López Varela SL, editor. The Encyclopedia of Archaeological Sciences. Hoboken, NJ: John Wiley & Sons. p 1-3.
3 Pomeroy E, Stock JT, Zakrzewski SR, Lahr MM. 2010. A metric study of three types of artificial cranial modification from North-Central Peru. Int J Osteoarchaeol 20:317–334.
4 Velasco MC. 2017. Ethnogenesis and social difference in the Andean Late Intermediate Period (AD 1100–1450): a bioarchaeological study of cranial modification in the Colca Valley, Peru. Curr Anthropol 59(1):98-106.
5 Senator M, Gronkiewicz S. 2012. Anthropological analysis of the phenomenon of atlas occipitalisation exemplified by a skull from Twardogora (17th c.)–Southern Poland. Int J Osteoarchaeol. 22:749-754.
6 Barnes E. 1994. Occipitocervical border shifting. In: Developmental defects of the axial skeleton in paleopathology.
Boulder, CO: University Press of Colorado. p 248. 7 Khudaveryan AY. 2011. Unusual occipital condyles and craniovertebral anomalies of skulls buried in the Late Antiquity
period (1st century BC – 3rd century AD) in Armenia. Eur J Anat, 15 (3):162-175.
 8 Singh R. 2014. Is variant anatomy of atlas clinically important? a review. Basic Sci of Med 3(1):1-7. 9 Monte de la Paz J, Linares Villanueva E. 2016. Un caso prehispánico de occipitalización del atlas: estudio antropofísico
de un cráneo humano de la cueva El Tapesco del Diablo, Chiapas. Diario de campo 10-11:46-54. 10 Verano JW. 1997. Human skeletal remains from Tomb 1, Sipán (Lambayeque River Valley, Peru); and their social
implications. Antiquity 71(273):670.
11 Eller AR, Canington S, Austin RM, Hofman CA, Sholts SB. 2019. EMPHASIS: Environmental Mismatches in Primates and Humans, Anthropogenic Settings and Impacts Survey.
12 Mudaliar RP, Shetty S, Nanjundaiah K, Kumar JP, KC J. 2013. An Osteological
Study of Occipitocervical Synostosis: Its Embryological and Clinical Significance. J Clin Diagn Res 7(9):1835–1837.
13 Zaganjor I, Sekkarie A, Tsang BL, Williams J, Razzaghi H, Mulinare J, Sniezek JE, 💦 🗸 🖓 🖓
Cannon MJ, Rosenthal J. 2016. Describing the Prevalence of Neural Tube Defects Worldwide: A Systematic Literature Review. PLoS One 11(4):e0151586.
14 Gopal K, Choudhary AK, Agarwal J, Ali S. 2015. Morphological status of assimilated atlas vertebra with occipital bone and its clinical significance. Int J Res
Med Sci 3(2):420-424.

REU Site, OCE-1560088

N=87