

Smithsonian National Museum of Natural History

NCBI

Molecular Evolution of Phototransduction Genes During Major Life History Transitions in Frogs Maya L. Woolfolk^{1,2}, Ryan K. Schott¹, Rayna C. Bell¹ ¹Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution ²Department of Biology, University of Kentucky

REU Site, OCE-1560088

Results

Tree	Model	InL	Parameters				Null	df	Р
LWS									
	M7	-6300.33	p:	0.14603	d:	1.08003	n/a		
	M8a	-6296.15	p:	0.193	q:	2.283	n/a		
			p1:	0.034	w:	1.000			
	M8	-6293.42	p:	0.163	q:	1.397	M7	2	0.0010
			p1:	0.006	w:	3.263	M8a	1	0.0194
RH1									
	M7	-5648.70	p:	0.11522	q:	0.93271	n/a		
	M8a	-5647.02	p:	0.130	q:	1.398	n/a		
			p1:	0.023	w:	1.000			
	M8	-5644.05	p:	0.125	q:	1.161	M7	2	0.0095

The random sites analysis shows that the dN/dS value ω is significantly greater than 1, indicating positive selection acting on both LWS and RH1

Model	AIC	Parameters				Null	df	Р
SWS1 - Aquatic vs. Terrestrial	13991.41	site	0	1	2	M2a_rel	1	0.0102
		proportion	0.665	0.031	0.304			
— ,		branch 0	0.015	1.000	0.241			
		branch 1	0.015	1.000	0.382			
SWS1 - Diurnal vs. Nocturnal	13997.79	site	0	1	2	M2a_rel	1	0.6518
		proportion	0.683	0.029	0.288			
		branch 0	0.017	1.000	0.298			
		branch 1	0.017	1.000	0.326			
SWS2 - Aquatic vs. Terrestrial	-6094.38	site	0	1	2	M2a_rel	1	0.6183
		proportion	0.273	0.027	0.700			
		branch 0	0.270	1.000	0.014			
		branch 1	0.270	1.000	0.010			
SWS2 - Diurnal vs. Nocturnal	-6094.38	site	0	1	2	M2a_rel	1	0.6825
		proportion	0.689	0.029	0.282			
		branch 0	0.011	1.000	0.267			
		branch 1	0.011	1.000	0.239			

Although there was no significant evidence for positive selection in the SWS1/SWS2 genes, we wanted to test if there might still be a differnce in in selective patterns based on the species' ecology. The Clade Model C analysis reveals significant divergent selection occurring between aquatic and terrestrial species in the SWS1 gene, while no significant divergent selection was noted in the SWS2 gene. In order to account for semiaquatic species, we ran the analysis with the semi-aquatics grouped first with terrestrial species, and then with aquatic species. The same process was used for the diurnal-nocturnal species. According to the results, there was no significant difference between the two versions of the test.

Conclusions

- Positive selection in RH1 and LWS

Differences in selection may be related to adaptation to different lifestyles (diurnal/nocturnal, terrestrial/aquatic)

References

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol

Bielawski JP, Yang Z. 2004. A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution. J Mol Evol 59:121-132.

Weadick CJ, Chang BSW. 2012. An improved likelihood ratio test for detecting site-specific functional divergence among clades of protein-coding genes. Mol Biol Evol 29:1297-1300.

Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol 59:307-321

Anisimova M, Gascuel O. 2006. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol 55:539-552.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792-1797.

Acknowledgements

We thank our collaborators Matthew Fujita, Jeffrey Streicher, and David Gower, and Klaus-Peter Koepfli and Austin Mudd for providing access to the unpublished Atelopus zeteki genome assembly. We thank the NHRE program coordinators, Gene Hunt and Liz Cottrell, and program administrator Virginia Power. This research was funded by NSFDEB-NERC 1655751.

