Utilizing DNA Barcoding to identify species sold across the Caribbean and improve conservation

Erika Scheibe, Steven Canty, MSc; Courtney Cox, PhD

Introduction

The Caribbean contains the highest concentration of marine species in the Atlantic Ocean and is a hotspot of marine biodiversity. ${ }^{[1]}$
n recent decades, marine ecosystems throughout the Caribbean have experienced a substantial decline in fish abundances. ${ }^{[2]}$
Overexploitation of fish continues today despite conservation efforts partly due
to illegal, unregulated, and unreported fishing and fish mislabeling ${ }^{[3]}$. to illegal, unregulated, and unreported fishing and fish mislabeling.
In previous studies, fish products were found to be mislabeled and sold as ess desirable species, endangered and threatened species, and species tha
Seafood fraud negatively impacts ecosystems, fish, consumers, and honest
Without better management, population recovery is unlikely
77% of fish labeled as the overfished red snapper (Lutjanus campechanus) on the East Coast of the United States were identified as less desirable pecies. ${ }^{[5]}$
DNA barcoding allows us to identify fish which we would otherwise not be able to identify, for example a fish fillet or fish oil.
DNA barcoding is a tool for determining which species are vulnerable to overfishing.

It is difficult and often inaccurate to identify a species based on its ffllet

Grouper fillet

Cod fillet
Catfish fillet

Methods

Fish and shark products were purchased from fish markets, restaurants, and supermarkets in Belize, Guatemala, Honduras, St. Kitts, and St. Maarten Products ranged from cooked dishes to raw fillets and fish oil.
Approximately 1 gram of tissue was collected and preserved in 95% ethanol Genomic DNA was extracted from sample tissue
Cytochrome oxidase I (a common gene used for barcoding) was amplified for each sample using polymerase chain reaction (PCR).
PCR products were ran on a 1% agarose gel to confirm amplification of the correct fragment.
Purified PCR products were sequenced
BLAST, or Basic Local Alignment Search Tool, was used to identify samples by species

Results

Product label	Product identification
Snapper (38) 11\%	Hogfish (7), Black grouper (4), Black triggerfish (4), Barracuda (3), Gray angelfish (3), Nassau grouper (2), Swordfish (2), Common dolphinfish (2), Snook (2), Queen triggerfish (1), Horse-eye jack (1), Greater amberjack (1), Yellow jack (1), Bar jack (1)
Catish (9) 44\%	Cubera snapper (1), Black grouper (1), Barracuda (1), Snook (1)
Grouper (8) 25\%	Catish (4), Hogfish (1), Multon snapper (1)
Snook (8) 25\%	Yellow snapper (1), Red grouper (2), Cubera snapper (3)
Cod (6) 0\%	Scalloped hammerhead shark (1), Silky shark (1), Blacktip shark (1), Nurse shark (1), Cobia (1), Atlantic sharpnose shark (1)
Shark (5) 20\%	Catfish (1) Scalloped hammerhead shark (1), Tiger shark (1), Spinner shark (1)
Yellowtail amberjack (4) 0\%	Hogfish (1), Mutton snapper (1), Greater amberjack (1), Catfish (1)
Cubera snapper (2) 50\%	Atlantic goliath grouper (1)
Salmon (2) 0\%	Almaco jack (1), Catish (1)
Barracuda (1) 0\%	Catfish (1)
Yellowfin Tuna (1) 0\%	Japanese amberiack (1)

	Key
Red	Critically endangered
Violet	Endangered
Yellow	Vulnerable
Blue	Near threatened
Green	Least concern
Black	Data deficient
Gray	Farmed

- The market label is in the "What you bought" column
- The identification is in the "What you got" column. Correct IDs are not shown
The number in parentheses shows how many samples were bought or identified
The percentage shows how often the sample of that species was labeled correctly

Percent mislabeled by country

Red is "No", not mislabeled.
Green is "Uknown". The sample collected was not originally labeled. Blue is "Yes", mislabeled.

Results

IUCN status of identified species

Conclusions and Discussion

31% of the 107 samples tested were found to be mislabeled. However, 11% of the samples collected were not labeled to begin with.
89% of the 38 samples sold as snapper were mislabeled
Species such as scalloped hammerhead shark contain mean mercury concentrations that exceed the regulatory limit of $1 \mathrm{mg} \mathrm{kg}^{-1}$, yet were being sold as a fish that is safe to consume (cod in this case). ${ }^{[6]}$
Threatened and endangered species were being sold as highly sought-after products such as snapper and grouper
Accurate labeling is required for effective conservation efforts and for consumer health. Better inspection and regulations are recommended

Acknowledgements

Thank-you to the following, without whom this research would not be possible:
My mentors: Courtney Cox, PhD and Steven Canty, MSc
NSF grant \#1560088, which funded this research
Laboratory of Analytical Biology and the scientists who work here
All those of who collected tissue samples across the Caribbean

Citations

Milur, D.M. \& Mariani, S. (2010) Smoke, mirirors and mislabeled cod: poor transparency in the European seafood
industry Front. Ecol. Environ, 8, 517 (-521.

Marko, P.B., Lee, S.C.. Rice, A.M. et el (2004). Mislabeling of a depleted reef fish. Nature, 430, $309-310$.

